Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922) 49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Ижевск (3412)26-03-58 Иваново (4932)77-34-06 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Ноябрьск (3496)41-32-12 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Саранск (8342)22-96-24 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сыктывкар (8212)25-95-17 Сургут (3462)77-98-35 Тамбов (4752)50-40-97 Казахстан (772)734-952-31

Тверь (4822)63-31-35 Гольяти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Улан-Удэ (3012)59-97-51 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

# https://kvant-kp.nt-rt.ru | kpk@nt-rt.ru

# ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

# Счетчики электрической энергии трехфазные многотарифные «КВАНТ-3Ф» Назначение средства измерений

Россия (495)268-04-70

Счетчики электрической энергии трехфазные многотарифные «КВАНТ-3Ф» (далее счетчики) предназначены для измерения и учета активной и реактивной электрической энергии в трехфазных трех- или четырехпроводных цепях переменного тока номинальной частоты 50 Гц по четырем тарифам дифференцировано по времени.

## Описание средства измерений

Принцип действия счетчика основан на вычислении действующих значений тока и напряжения, активной и реактивной энергии, активной, реактивной и полной мощности, коэффициента мощности и частоты сети переменного тока по измеренным мгновенным значениям входных сигналов тока и напряжения.

Счетчик имеет в своем составе микроконтроллер со встроенным измерительно- вычислительным ядром и часами реального времени, позволяющими вести учет активной и реактивной электроэнергии по тарифным зонам суток, энергонезависимую память данных литиевую батарею для обеспечения резервного питания, испытательные выходы для поверки, жидкокристаллический индикатор и кнопку для просмотра информации, интерфейс удалённого, доступа в зависимости от модификации, для подключения к системам автоматизированного учета, оптический порт и блок питания.

Счетчик состоит из следующих функциональных узлов:

- датчика тока;
- датчика напряжения;
- блока питания;
- счетного механизма с энергонезависимой памятью и жидкокристаллическим индикатором (ЖКИ) в качестве устройства отображения информации;
  - часов реального времени;
  - источника резервного питания;
  - измерительной схемы;
  - интерфейсных схем;
  - оптического импульсного выхода;
  - радиомодуля;
  - испытательного выхода.

Датчик напряжения представляет собой резистивный делитель. Счетный механизм счетчика - электронный, содержит микроконтроллер, память и жидкокристаллический индикатор (в дальнейшем - счетчик с ЖКИ). Принцип работы измерительной схемы основан на измерении и математической обработке сигналов тока и напряжения с последующим вычислением параметров потребления электрической энергии и передаче этой информации в счетный механизм. Результаты измерения сохраняются в энергонезависимой памяти счетчика и отображаются на ЖКИ. Часы реального времени интегрированы в микроконтроллер. При отсутствии внешнего напряжения питание часов осуществляется от резервного источника питания – литиевой батареи.

Счетчики ведут учет потребленной энергии по тарифам, в соответствии с заданным тарифным расписанием. Тарифные расписания задаются отдельно для рабочих выходных и праздничных дней. Счетчик измеряет энергию нарастающим итогом и сохраняет в энергонезависимой памяти измеренные значения энергии нарастающим итогом на 24:00 последнего дня каждого месяца, измеряют максимальные мощности, усреднённые на временном интервале. Интервал усреднения мощности программируется пользователем.

Счетчики имеют встроенный расцепитель нагрузки, обеспечивающий возможность отключения нагрузки при превышении заданного лимита активной мощности/энергии, при превышении заданных порогов напряжения, при неравенстве токов в фазном и нулевом проводах, при обнаружении магнитного поля действующего более 10 секунд, а также по команде диспетчера.

Конструктивно счетчик выполнен в виде электронного модуля, размещенного в корпусе с клеммной колодкой, и крышкой клеммной колодки.

Область применения: предприятия энергетики, промышленности, сельского хозяйства и жилищно-коммунального хозяйства.

Внешний вид счетчиков и место опломбирования с местом нанесения знака поверки представлены на рисунке 1.



Рисунок 1 - Внешний вид счетчика электрической энергии однофазного многотарифного «КВАНТ-3Ф» с местами опломбирования и нанесения знака поверки

#### Программное обеспечение

Программное обеспечение (ПО) счетчиков электрической энергии трехфазных многотарифных «КВАНТ- $3\Phi$ » разработано специалистами ОАО «НПП КП «Квант» и является собственностью компании.

Встраиваемое ПО записывается в память микроконтроллера, с установкой бита защиты от считывания, до его монтажа на печатную плату. После установки бита защиты чтение и копирование ПО невозможно.

Корректировка метрологических коэффициентов, отвечающих за точность измерений, возможна только в процессе производства при снятом кожухе и установленной аппаратной перемычке. После удаления аппаратной перемычки и опломбировании корпуса изменение метрологических коэффициентов невозможно.

Изменение параметров пользователя, таких как тарифные расписания, исключительные дни, даты начала сезонов, текущие время и дата, интервалы усреднения мощности, набор параметров выводимых на индикацию в автоматическом режиме, время фиксации энергии на конец месяца, а так же обнуление журналов событий, графиков нагрузки, значений энергетических параметров на конец месяца и конец суток возможно только после удаления пломбы энергоснабжающей организации, при наличии соответствующего ПО и знании паролей доступа к изменяемым параметрам.

ПО записываемое в память программ микроконтроллеров зависит от модификации счетчика.

Номер версии ПО счетчика может быть считан с помощью ПО «Система учета энергоресурсов «Квант-Энерго» сервисное программное обеспечение «конфигуратор».

Характеристики программного обеспечения представлены в таблице таблица 1.

Таблица 1- Идентификационные данные программного обеспечения

| Идентификационные данные (признаки)       | Значение                         |
|-------------------------------------------|----------------------------------|
| Идентификационное наименование ПО         | Встроенное ПО КВАНТ-3Ф           |
| Номер версии (идентификационный номер ПО) | 04                               |
| Цифровой идентификатор ПО                 | 7F5C4340B902E031CD99A09470B50918 |
| Другие идентификационные данные           | md5                              |

Уровень защиты ПО счетчиков от непреднамеренных и преднамеренных изменений высокий в соответствии с P 50.2.077-2014.

## Метрологические и технические характеристики

Основные метрологические и технические характеристики счетчиков приведены в таблицах 2 и 3.

Таблица 2 - Метрологические характеристики

| Наименование характеристики                                                      | Значение                  |
|----------------------------------------------------------------------------------|---------------------------|
| Класс точности при измерении активной энергии/мощности (по ГОСТ 31819.21-2012)   | 1                         |
| Класс точности при измерении реактивной энергии/мощности (по ГОСТ 31819.23-2012) | 2                         |
| Номинальное напряжение, В                                                        | 3×230/400                 |
| Диапазон рабочих напряжений, В                                                   | от 3×172/300 до 3×264/460 |
| Базовый (максимальный) ток, А                                                    | 10 (100)                  |
| Номинальная частота сети, Гц                                                     | 50                        |
| Диапазон рабочих частот, Гц                                                      | от 47,5 до 52,5           |
| Стартовый ток (порог чувствительности), А                                        | $0{,}004~\mathrm{I}_{6}$  |
| Номинальный (максимальный) ток размыкания, А                                     | 40 (80)                   |
| Диапазон рабочих температур, °С                                                  | от -40 до +70             |
| Относительная влажность воздуха при температуре +30°C, %,                        |                           |
| не более                                                                         | 90                        |
| Пределы допускаемой основной погрешности точности хода                           |                           |
| часов при температуре 23±5 °C, с/сутки                                           | ±0,5                      |
| Пределы допускаемой дополнительной погрешности точности                          | _                         |
| хода часов в рабочем диапазоне температур, $c \cdot {}^{\circ}C^{2}/c$ утки      | $\pm 0,002$               |

Продолжение таблицы 2

| Наименование характеристики                                                         | Значение             |  |
|-------------------------------------------------------------------------------------|----------------------|--|
| Параметры сети                                                                      |                      |  |
| Пределы допускаемой относительной погрешности                                       |                      |  |
| измерения активной мощности, %                                                      |                      |  |
| - при 0,1 Іб                                                                        | ±1,5                 |  |
| - от Іб до Імакс                                                                    | $\pm 1,0$            |  |
| Пределы допускаемой относительной погрешности                                       |                      |  |
| измерения силы тока, %                                                              |                      |  |
| - при 0,1 Іб                                                                        | ±3,0                 |  |
| - от Іб до Імакс                                                                    | $\pm 2,0$            |  |
| Пределы допускаемой относительной погрешности измерения                             |                      |  |
| напряжения в диапазоне рабочих напряжений, %                                        | $\pm 0,5$            |  |
| Пределы допускаемой абсолютной погрешности измерения                                |                      |  |
| частоты сети, Гц                                                                    | $\pm 0,\!08$         |  |
| Диапазон измерения коэффициента активной мощности                                   | от 0,8 (емк.) до 1,0 |  |
|                                                                                     | до 0,5 (инд.)        |  |
| Пределы допускаемой абсолютной погрешности измерения коэффициента активной мощности | $\pm 0.05$           |  |

Таблица 3 – Технические характеристики

| Наименование характеристики                                     | Значение      |
|-----------------------------------------------------------------|---------------|
| Передаточное число основного и поверочного выходов (постоянная  |               |
| счетчика), имп./(кВт·ч) (имп./(квар·ч)                          | 800           |
| Активная мощность, потребляемая в цепи напряжения, Вт, не более | 4,0           |
| Полная мощность потребляемая:                                   |               |
| - в цепи напряжения, В А, не более                              | 8,5           |
| - в цепи тока, при номинальном токе, ВА, не более               | 0,2           |
| Количество тарифов, не менее                                    | 4             |
| Количество тарифных зон суток                                   | 8             |
| Количество сезонов                                              | 12            |
| Количество исключительных дней                                  | 32            |
| Диапазон температур транспортирования, °С                       | от -50 до +70 |
| Габаритные размеры (высота×ширина×глубина), мм, не более        | 180×230×65    |
| Масса, кг, не более                                             | 1,5           |
| Средний срок службы, лет, не менее                              | 30            |
| Средняя наработка на отказ, ч, не менее                         | 280 000       |

# Знак утверждения типа

наносится на панели счетчика методом офсетной печати или другим способом, не ухудшающим качества и на титульном листе руководства по эксплуатации типографским способом.

## Комплектность средства измерений

Комплектность счетчиков приведена в таблице 4.

Таблица 4 - Комплектность

| Наименование                             | Обозначение        | Количество |
|------------------------------------------|--------------------|------------|
| Счетчик электрической энергии трехфазные |                    |            |
| многотарифные «КВАНТ-3Ф»                 | ИМБТ.411152.002    | 1          |
| Руководство по эксплуатации              | ИМБТ.411152.002 РЭ | 1          |

#### Продолжение таблицы 4

| Наименование                                          | Обозначение        | Количество |
|-------------------------------------------------------|--------------------|------------|
| Паспорт                                               | ИМБТ.411152.002 ПС | 1          |
| Методика поверки (поставляется по требованию          |                    |            |
| потребителя)                                          | ИМБТ.411152.002 МП | 1          |
| Программное обеспечение «Система учета энергоресур-   |                    |            |
| сов «Квант-Энерго» сервисное программное обеспечение  | -                  | 1          |
| «конфигуратор» (по согласованию с заказчиком допуска- |                    |            |
| ется поставка документов на компакт диске или путем   |                    |            |
| загрузки с сайта изготовителя)                        |                    |            |

#### Поверка

осуществляется по документу ИМБТ.411152.002 МП «Счетчик электрической энергии трехфазные многотарифные «КВАНТ-3 $\Phi$ ». Методика поверки», утвержденному  $\Phi$ ГУП «ВНИИМС» 19.07.2018г.

Основные средства поверки:

установка автоматическая трехфазная для поверки счетчиков электрической энергии HEBA-Тест 6303 (регистрационный № 52156-12);

вольтметр цифровой универсальный B7-78/1 (регистрационный № 52147-12); частотомер электронно-счетный Ч3-63 (регистрационный № 32496-06).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на навесную пломбу давлением плобмира. Знак поверки в виде оттиска наносится на свидетельство о поверке и в формуляр.

## Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

# Нормативные и технические документы, устанавливающие требования к счетчикам электрической энергии трехфазным многотарифным «КВАНТ-3Ф»

ГОСТ 31818.11-2012 Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии

ГОСТ 31819.21-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2

ГОСТ 31819.23-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии

ИМБТ.411152.002 ТУ. Счетчики электрической энергии трехфазные многотарифные «КВАНТ-3Ф». Технические условия

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922) 49-43-18 Волгоград (844)278-03-48 Волоград (847)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Ижевск (3412)26-03-58 Иваново (4932)77-34-06 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Краснорск (391)204-63-61 Курск (4712)77-13-04 Курган (352)50-90-47 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнеци (3843)20-46-81 Ноябрьск (3496)41-32-12 Ноябрьск (3496)41-32-12 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петроаводск (8142)55-98-37 Псков (8112)59-10-37

Россия (495)268-04-70

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Саранск (8342)22-96-24
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сыктывкар (8212)25-95-17
Сургут (3462)77-98-35
Тамбов (4752)50-40-97

Тверь (4822)63-31-35 Тольяти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93